## **Chalking out Some Geometry from a Bit of Trigonometry**

Oleksandr G. Akulov, MM in OR, BMath, Vancouver, British Columbia Gregory V. Akulov, teacher, Luther College High School, Regina, Saskatchewan

Dozens of identities that we learn were discovered overseas a thousand years ago. A couple that we don't learn<sup>1</sup> were discovered ten years ago right here in Canada:

$$\sin^{-1}x + \sin^{-1}y = 2\sin^{-1}v,$$
  

$$\cos^{-1}x + \cos^{-1}y = 2\cos^{-1}v,$$
  
where  $2v = \sqrt{(1+x)(1+y)} - \sqrt{(1-x)(1-y)}$ . (1)

They work well for Cartesian geometry<sup>2</sup> and are naturally extendable to Euclidean one.

**Proposition 1.** Diameter PQ = 2c of semicircle (Diagram 1) has perpendiculars of lengths a,

 $\mu$ , and *b*. Show that AM = MB iff  $2\mu = \sqrt{(c+a)(c+b)} \pm \sqrt{(c-a)(c-b)}$  (2). One way to prove Proposition 1 is to use identities (1) along with arc midpoint computation.

The following statements continue geometric interpretations of (2) and can be deduced similarly. Consider these proofs as exercises.

**<u>Proposition 2.</u>** A circle (Diagram 2) of diameter c has chords AC = a,  $MC = \mu$ , and BC = b. Prove that  $\angle ACM = \angle MCB$  iff (2).

**<u>Proposition 3.</u>** Trapezoid (Diagram 3) has bases a, b, and circumdiameter c. Show that the length of its diagonal,  $\mu$ , satisfies (2).

**<u>Proposition 4.</u>** Prove that on a globe<sup>3</sup> of radius c (Diagram 4), the parallel of radius  $\mu$  is equidistant from the parallels of radii a and b iff (2).





Copyright © February 5, 2019 by Oleksandr G. Akulov and Gregory V. Akulov

<sup>&</sup>lt;sup>1</sup> http://mathcentral.uregina.ca/RR/database/RR.09.18/akulov3.pdf

<sup>&</sup>lt;sup>2</sup> http://mathcentral.uregina.ca/RR/database/RR.09.10/akulov2.html

<sup>&</sup>lt;sup>3</sup> http://mathcentral.uregina.ca/RR/database/RR.09.14/akulov2.html