Chalking out Some Geometry from a Bit of Trigonometry

Oleksandr G. Akulov, MM in OR, BMath, Vancouver, British Columbia

Gregory V. Akulov, teacher, Luther College High School, Regina, Saskatchewan

Dozens of identities that we learn were discovered overseas a thousand years ago. A couple that we don't learn ${ }^{1}$ were discovered ten years ago right here in Canada:

$$
\begin{align*}
& \sin ^{-1} x+\sin ^{-1} y=2 \sin ^{-1} v \\
& \cos ^{-1} x+\cos ^{-1} y=2 \cos ^{-1} v \tag{1}
\end{align*}
$$

where $2 v=\sqrt{(1+x)(1+y)}-\sqrt{(1-x)(1-y)}$.
They work well for Cartesian geometry ${ }^{2}$ and are naturally extendable to Euclidean one.
Proposition 1. Diameter $P Q=2 c$ of semicircle (Diagram 1) has perpendiculars of lengths a, μ, and b. Show that $A M=M B$ iff $\quad 2 \mu=\sqrt{(c+a)(c+b)} \pm \sqrt{(c-a)(c-b)} \quad$ (2). One way to prove Proposition 1 is to use identities (1) along with arc midpoint computation.

The following statements continue geometric interpretations of (2) and can be deduced similarly. Consider these proofs as exercises.

Proposition 2. A circle (Diagram 2) of diameter c has chords $A C=a, M C=\mu$, and $B C=b$. Prove that $\angle A C M=\angle M C B$ iff (2).

Proposition 3. Trapezoid (Diagram 3) has bases a, b, and circumdiameter c. Show that the length of its diagonal, μ, satisfies (2).

Proposition 4. Prove that on a globe ${ }^{3}$ of radius c (Diagram 4), the parallel of radius μ is equidistant from the parallels of radii a and b iff (2).

Diagram 3

Diagram 2

Diagram 4

Copyright © February 5, 2019 by Oleksandr G. Akulov and Gregory V. Akulov

[^0]
[^0]: ${ }^{1}$ http://mathcentral.uregina.ca/RR/database/RR.09.18/akulov3.pdf
 ${ }^{2}$ http://mathcentral.uregina.ca/RR/database/RR.09.10/akulov2.html
 ${ }^{3}$ http://mathcentral.uregina.ca/RR/database/RR.09.14/akulov2.html

