Arc's Midpoint Turns Kinetic, Adds Applied to Theoretic...

Gregory V. Akulov, teacher, Luther College High School, Regina, Saskatchewan
auf Duetsch
en français
An object, initially at rest, slides from the top of a vertical semicircular path with a horizontal diameter (see diagram). At points A, B, C, and M along the semicircle, the object has kinetic energy in joules $a=62 \mathrm{~J}, b=638 \mathrm{~J}, c=962 \mathrm{~J}$, and $\mu \mathrm{J}$, respectively. If C is the lowest point of the path, and M is equidistant from A and \boldsymbol{B}, determine the exact value of μ. Assume that the path is frictionless and the air resistance is negligible.

The arc midpoint computation ${ }^{1}$ approach to solving this problem finds

$$
2 \mu=\sqrt{(962 \mathrm{~J}+638 \mathrm{~J})(962 \mathrm{~J}+62 \mathrm{~J})}+\sqrt{(962 \mathrm{~J}-638 \mathrm{~J})(962 \mathrm{~J}-62 \mathrm{~J})}, \text { and } \mu=910 \mathrm{~J}
$$

1. Verify the answer using alternative approach. Compare solutions.
2. Show that the values of kinetic energy a, b, c, and μ satisfy

$$
\begin{equation*}
2 \mu=\sqrt{(c+a)(c+b)} \pm \sqrt{(c-a)(c-b)} \tag{1}
\end{equation*}
$$

3. Specify when (1) requires the sum of radicals, and when it requires their difference.
[^0]
[^0]: ${ }^{1}$ http://mathcentral.uregina.ca/RR/database/RR.09.10/akulov2.html

