.
. centre de ressources dilemmes et doutes le visage humain de mathématiques Qui sommes-nous Problème de mois activités de promotion babillard
Centrale des maths - centraledesmaths.uregina.ca
Dilemmes & doutes
« D & D »
. .
topic card  

Sujet:

partitions

liste de
sujets
. .
nouvelle recherche

4 articles trouvés pour ce sujet.
 
Page
1/1
Partitions of a set 2019-12-21
Ghani pose la question :
1. Are set partition "sets"?

2. If they are so then, why are both {{a}{b,c}} and {{a,b}{c}} said to be valid partitions
of A ={a,b,c} despite them having different elements?

(I understand that set are equal if they have the exact same elements).

Thank you!

Harley Weston lui répond.
Partitions into distinct parts 2015-09-19
Brian pose la question :
Looking for a formula where I can type in a number, 17 for example, and using the numbers 1 through 17 (1, 2, 3, 4 etc....), to come up with all possible combinations, when added, that will equal 17. And each number can only be used once. I've tried a few search engines but my computer stares at me blankly and scratches its head :-/.
Chris Fisher lui répond.
Restricted partitions 2013-03-25
vidya pose la question :
I am having a series of numbers eg.( 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) I can take any 5 digits eg(15,10,8,6,5) and it should not repeat and the summation should be any predefined static value . eg(44) That is (15+10+8+6+5=44) . How many summation series will result 44 ? My problem is how to find this using a formula or any other simpler automation method is there instead of checking one by one all the combinations. Plz do help me... Thnks in advance
Chris Fisher lui répond.
Two problems 2002-10-14
Eva pose la question :

a) How many different equivalence relations can be defined on the set X={a,b,c,d}?

b)Show that 6 divides the product of any 3 consecutive integers. I know it is true that 6 divides the product of any 3 consecutive integers. However, i have problem showing the proof.


Leeanne Boehm and Penny Nom lui répond.
 
Page
1/1

 

 


Centrale des maths reçoit une aide financière de l’Université de Regina et de The Pacific Institute for the Mathematical Sciences.

CMS
.

 

accueil centre de ressources accueil Société mathématique du Canada l'Université de Regina PIMS