.
. centre de ressources dilemmes et doutes le visage humain de mathématiques Qui sommes-nous Problème de mois activités de promotion babillard
Centrale des maths - centraledesmaths.uregina.ca
Dilemmes & doutes
« D & D »
. .
topic card  

Sujet:

counter-intuitive

liste de
sujets
. .
nouvelle recherche

Un article trouvé pour ce sujet.
 
Page
1/1
The birthday problem 1999-04-19
Gordon Cooke pose la question :
How do I explain the rapid rise in the probability that at least two people in a group of n have the same birthday. We have derived the formula for p(n) and have graphed it and have seen how the results are counter-intuitive. At around n=23 p(n)=.5 and at n=50 p(n) is very close to 1. It does not help to simplify the problem (eg use months instead of days) because then our intuition does correspond more closely to reality. Is there some way we can see how the probabiltiy of a "collision" increases with n? It makes me think of data storage problems and hash tables in computer science.
Harley Weston lui répond.
 
Page
1/1

 

 


Centrale des maths reçoit une aide financière de l’Université de Regina et de The Pacific Institute for the Mathematical Sciences.

CMS
.

 

accueil centre de ressources accueil Société mathématique du Canada l'Université de Regina PIMS