.
. centre de ressources dilemmes et doutes le visage humain de mathématiques Qui sommes-nous Problème de mois activités de promotion babillard
Centrale des maths - centraledesmaths.uregina.ca
Dilemmes & doutes
« D & D »
. .
topic card  

Sujet:

spherical geometry

liste de
sujets
. .
nouvelle recherche

6 articles trouvés pour ce sujet.
 
Page
1/1
Great circle course 2012-01-25
Hervé pose la question :
On the earth, the mathematical formula giving the distance between two points, and the initial course for a boat on the great circle is well known. I need to find the inverse formula, ie knowing an initial position on earth, and the initial course of the boat, and the distance to run on the great circle, the formula gives the final position (longitude and latitude).
Robert Dawson lui répond.
A triangle on a sphere 2009-09-07
Rohit pose la question :
How do I find the angles of a triangle drawn on a sphere (spherical triangle)?
Chris Fisher lui répond.
A convex quadrilateral in spherical geometry 2008-07-09
Joan pose la question :
What is the min and max number of obtuse angles possible ia a convex quadrilateral in Spherical Geometry? I know that the Saccheri has 2 obtuse angles and the Lambert has one, but are there other possibilities? Thanks for your help.
Chris Fisher lui répond.
Non-euclidean geometry 2003-12-08
Geoffrey pose la question :
How can you use non-euclidean geometry to navigate on a sphere? What geometers did work in this area?
Chris Fisher lui répond.
Non-Euclidean geometry 2003-12-03
Geoffrey pose la question :
What are the applications of Non-Euclidean geometry (especially hyperbolic and spherical)?
Walter Whiteley lui répond.
Surface area of a contact lens 2000-06-06
Evie Contreras pose la question :
I would like to know how to calculate the surface area of a contact lens with a radius of 7mm? I know that the area of a circle is pi R squared, but a contact lens has a dome.
Harley Weston lui répond.
 
Page
1/1

 

 


Centrale des maths reçoit une aide financière de l’Université de Regina et de The Pacific Institute for the Mathematical Sciences.

CMS
.

 

accueil centre de ressources accueil Société mathématique du Canada l'Université de Regina PIMS