.
. centre de ressources dilemmes et doutes le visage humain de mathématiques Qui sommes-nous Problème de mois activités de promotion babillard
Centrale des maths - centraledesmaths.uregina.ca
Dilemmes & doutes
« D & D »
. .
topic card  

Sujet:

mirrors

liste de
sujets
. .
nouvelle recherche

6 articles trouvés pour ce sujet.
 
Page
1/1
A periscope 2009-10-05
likhitha pose la question :
In a periscope, MIRRORS ARE PLACED PARALLELLY.Then why they do not form multiple images
Robert Dawson and Chris Fisher lui répond.
Two mirrors 2007-10-24
Peter pose la question :
The reflecting surfaces of two intersecting flat mirrors are at an angle θ (0° < θ < 90°). For a light ray that strikes the horizontal mirror, show that the emerging ray will intersect the incident ray at an angle β = 180° – 2θ.
Stephen La Rocque lui répond.
Lines of symmetry 2002-04-22
Cindie pose la question :
How many lines of symmetry do the following figures contain?

trapezoid:

rhombus:

hexagon:

pentagon:


Walter Whiteley lui répond.
Parabolic mirrors 1999-11-07
Andy White pose la question :
I am working on a project concerning parabolic mirrors. I need to create a mirror to focus sunlight on a focal point, but I don't know how to do it. Is there some equation that tells where a focal point will be in relation to a parabola?

What is a directrix?
Penny Nom lui répond.

Satellite dishes 1999-02-10
Katherine Shaw pose la question :
I have read your information on 'Why are satellite dishes parabolic", and I know the reciever should be placed at the focus of the parabola. Could you test this with lights beams and a parabolic mirror, or would light beams behave differently. Thanks.
Jack LeSage and Harley Weston lui répond.
Parabolic Mirrors 1997-01-28
Megan Wennberg pose la question :
Consider a ray of light that passes through a chord of a parabola (the chord is above the focus and parallel to the directrix), hits the parabola at a point (x,y) and is reflected through the focus. If d1 is the distance from the chord to the point of incidence (x,y) and d2 is the distance from (x,y) to the focus, can you prove that the sum of the distances d1+d2 is constant, independent of the particular point of incidence.
Penny Nom lui répond.
 
Page
1/1

 

 


Centrale des maths reçoit une aide financière de l’Université de Regina et de The Pacific Institute for the Mathematical Sciences.

CMS
.

 

accueil centre de ressources accueil Société mathématique du Canada l'Université de Regina PIMS