.
. centre de ressources dilemmes et doutes le visage humain de mathématiques Qui sommes-nous Problème de mois activités de promotion babillard
Centrale des maths - centraledesmaths.uregina.ca
Dilemmes & doutes
« D & D »
. .
topic card  

Sujet:

minimum

liste de
sujets
. .
nouvelle recherche

37 articles trouvés pour ce sujet.
 
Page
1/1
Form a square and a triangle from a wire 2020-04-08
Raahim pose la question :
2. A 2 meter piece of wire is cut into two pieces and once piece is bent into a square and the other is bent into an equilateral triangle. Where should the wire cut so that the total area enclosed by both is minimum and maximum?
Penny Nom lui répond.
A relative maximum and a relative minimum 2015-12-28
kemelo pose la question :
show for the following function f(x)=x+1/x has its min value greater than its max value
Penny Nom lui répond.
Two max/min problems 2010-04-11
Amanda pose la question :
1) Find the area of the largest isosceles triangle that canbe inscribed in a circle of radius 4 inches.

2)a solid is formed by adjoining two hemispheres to the end of a right circular cylinder. The total volume of the solid is 12 cubic centimeters. Find the radius of the cylinder that produces the minimum surface area.

Tyler Wood lui répond.
The minimum point of a quadratic 2009-12-31
rachel pose la question :
y=0.0008x^2-0.384x
What is the minimum point of this equation?

Penny Nom lui répond.
Ordering pizza for 162 people 2009-10-01
Jean pose la question :
Need to know how to feed about 162 people 70 square inches of pizza at the lowest price.

22" Pizza is $9.95
16" Pizza is $5.25
12" Pizza is $2.99

Penny Nom lui répond.
The optimal retail price for a cake 2009-03-25
Shawn pose la question :
Your neighbours operate a successful bake shop. One of their specialties is a cream covered cake. They buy them from a supplier for $6 a cake. Their store sells 200 a week for $10 each. They can raise the price, but for every 50cent increase, 7 less cakes are sold. The supplier is unhappy with the sales, so if less than 165 cakes are sold, the cost of the cakes increases to $7.50. What is the optimal retail price per cake, and what is the bakeshop's total weekly profit?
Robert Dawson lui répond.
Partial derivatives 2009-01-17
Meghan pose la question :
I have a question I've been working at for a while with maxima/minima of partial derivatives.

"Postal rules require that the length + girth of a package (dimensions x, y, l) cannot exceed 84 inches in order to be mailed. Find the dimensions of the rectangular package of greatest volume that can be mailed. (84 = length + girth = l + 2x + 2y)"

Harley Weston lui répond.
A max/min problem 2009-01-09
Angelica pose la question :
have 400 feet of fence. Want to make a rectangular play area. What dimensions should I use to enclose the maximum possible area?
Robert Dawson lui répond.
A kennel with 3 individual pens 2009-01-06
Jean pose la question :
An animal clinic wants to construct a kennel with 3 individual pens, each with a gate 4 feet wide and an area of 90 square feet. The fencing does not include the gates. Write a function to express the fencing as a function of x. Find the dimensions for each pen, to the nearest tenth of a foot that would produce the required area of 90 square feet but would use the least fencing. What is the minimum fencing to the nearest tenth?
Harley Weston lui répond.
The minimum value of f(x)=maximum{x,x+1,2-x} 2008-09-21
Saurabh pose la question :
The minimum value of the function defined by f(x)=maximum{x,x+1,2-x} ?
Penny Nom lui répond.
Minimize the cost 2008-04-26
A pose la question :
A power line is to be constructed from the shore of a lake to an island that is 500 m away. The closest powerline ends 4km along the shore from the point on the shore closest to the island. If it costs 5 times as much to lay the powerline underwater as along the shore, how should the line be installed to minimize the cost?
Stephen La Rocque lui répond.
The smallest possible perimeter 2008-01-23
RS pose la question :
If two points of a triangle are fixed, then how can the third point be placed in order to get the smallest possible perimeter of the triangle.
Chris Fisher and Penny Nom lui répond.
Smallest cone containing a 4cm radius inscribed sphere 2007-12-19
Eva pose la question :
A sphere with a radius of 4cm is inscribed into a cone. Find the minimum volume of the cone.
Stephen La Rocque lui répond.
ln(x)/x 2007-12-07
Nooruddin pose la question :
How can I calculate the absolute minimum of (ln x)/x?
Stephen La Rocque lui répond.
Local maxima, minima and inflection points 2007-11-13
Russell pose la question :
let f(x) = x^3 - 3a^2^ x +2a^4 with a parameter a > 1.

Find the coordinates of local minimum and local maximum

Find the coordinates of the inflection points

Harley Weston lui répond.
f(x) = (x^4) - 4x^3 2007-07-22
Michael pose la question :
I'm a student who needs your help. I hope you'll be able to answer my question. Here it is: Given the function f(x)=(x^4)-4x^3, determine the intervals over which the function is increasing, decreasing or constant. Find all zeros of f(x) and indicate any relative minimum and maximum values of the function.
Any help would be appreciated. Thank you for your time.

Harley Weston lui répond.
A fence around a pen 2006-03-30
Daryl pose la question :
I hope you can help me out with the attached problem, It has been driving me crazy.
Stephen La Rocque and Penny Nom lui répond.
A max-min problem 2005-12-16
Julie pose la question :
A car travels west at 24 km/h. at the instant it passes a tree, a horse and buggy heading north at 7 km/h is 25 km south of the tree. Calculate the positions of the vessels when there is a minimum distance between them.
Penny Nom lui répond.
A variable rectangle 2005-11-08
Mussawar pose la question :
find the lengths of the sides of a variable rectangle having area 36 cm2 when its perimeter is minimum i do not want solution of this question. i would like to know what is mean by variable rectangle.and what is difference between rectangle and variable rectangle.also what is mean by when its perimeter is minimum.
Penny Nom lui répond.
A trig problem 2004-08-02
A student pose la question :
Given that the maximum value of [sin(3y-2)]^2 -[cos(3y-2)]^2 is k. If y>7, Find the minimum value of y for which [Sin(3y-2)]^2 - [cos(3y-2)]^2 =k.
Penny Nom lui répond.
The volume of air flowing in windpipes 2003-05-02
James pose la question :
The volume of air flowing in windpipes is given by V=kpR4, where k is a constant, p is the pressure difference at each end, R is the radius. The radius will decrease with increased pressure, according to the formula: Ro - R = cp, where Ro is the windpipe radius when p=0 & c is a positive constant. R is restricted such that:
0 < 0.5*Ro < R < Ro,
find the factor by which the radius of the windpipe contracts to give maximum flow?

Penny Nom lui répond.
A max/min problem 2002-09-21
Evelina pose la question :
A window is the shape of a rectangle with an equilateral triangle on top. The perimeter of the window is 300 cm. Find the width that will let the maximum light to enter.
Penny Nom lui répond.
A rectangular marquee 2002-05-07
Alyaa pose la question :
a marquee with rectangular sides on a square base with a flat roof is to be constructed from 250 meters square of canvas. find the maximum volume of the marquee. i find this topic so hard
Harley Weston lui répond.
Getting to B in the shortest time 2001-12-19
Nancy pose la question :
A motorist in a desert 5 mi. from point A, which is the nearest point on a long, straight road, wishes to get to point B on the road. If the car can travel 15 mi/hr on the desert and 39 mi/hr on the road to get to B, in the shortest possible time if......

A.) B is 5 mi. from A

B.) B is 10 mi. from A

C.) B is 1 mi. from A


Penny Nom lui répond.
A lighthouse problem 2001-11-02
A student pose la question :
A lighthouse at apoint P is 3 miles offshore from the nearest point O of a straight beach. A store is located 5 miles down the beach from O. The lighthouse keeper can row at 4 mph and walk at 3.25 mph.

a)How far doen the beach from O should the lighthouse keeper land in order to minimize the time from the lighthouse to the store?

b)What is the minimum rowing speed the makes it faster to row all the way?

Harley Weston lui répond.
An emergency response station 2001-03-29
Tara pose la question :
Three cities lying on a straight line want to jointly build an emergency response station. The distance between each town and the station should be as short as possible, so it cannot be built on the line itself, but somewhere east or west. Also, the larger the population of a city, the greater the need to place the station closer to that city. You are to minimize the overall sum of the products of the populations of each city and the square of the distance between that city and the facility. City A is 6 miles from the road's origin, City B is 19 miles away from the origin, and City C is 47 miles from the origin. The populations are 18,000 for City A, 13,000 for City B, and 11,000 for City C. Where should the station be located?
Claude Tardif and Penny Nom lui répond.
Airflow in windpipes 2001-03-25
Ena pose la question :
The volume of air flowing in windpipes is given by V=kpR4, where k is a constant, p is the pressure difference at each end, R is the radius. The radius will decrease with increased pressure, according to the formula: Ro - R = cp, where Ro is the windpipe radius when p=0 & c is a positive constant. R is restricted such that:
0 < 0.5*Ro < R < Ro,
find the factor by which the radius of the windpipe contracts to give maximum flow?

Harley Weston lui répond.
The smaller of a and b 2000-09-14
Jenna pose la question :
For any two real numbers, a and b, give a mathematical expression in terms of a and b that will yield the smaller of the two numbers. Your expression should work regardless of whether a>b, a
Penny Nom lui répond.
A problem with a quadratic 2000-08-09
David Xiao pose la question :
Find the value of a such that 4x2 + 4(a-2)x - 8a2 + 14a + 31 = 0 has real roots whose sum of squares is minimum.
Harley Weston lui répond.
Divisors of 2000 2000-06-06
Amanda Semi pose la question :
  1. find the product of all the divisors of 2000
  2. dog trainer time has 100m of fencing to enclose a rectangular exercise yard. One side of the yard can include all or part of one side of his building. iff the side of his building is 30 m, determine the maximum area he can enclose

Claude Tardif lui répond.
Thearcius Functionius 2000-05-03
Kevin Palmer pose la question :
With the Olympics fast approaching the networks are focusing in ona new and exciting runner from Greece. Thearcius Functionius has astounded the world with his speed. He has already established new world records in the 100 meter dash and looks to improve on those times at the 2000 Summer Olympics.

Thearcius Functionius stands a full 2 meters tall and the networks plan on placing a camera on the ground at some location after the finish line(in his lane) to film the history making run. The camera is set to film him from his knees(0.5 meters up from the ground) to 0.5 meters above his head at the instant he finishes the race. This is a total distance of two meters(the distance shown by the camera's lens).
Harley Weston lui répond.

Minimizing the metal in a can 2000-05-02
May Thin Zar Han pose la question :
A can is to be made to hold 1 L of oil. Find the dimensions that will minimize the cost of the metal to manufacture the can.
Harley Weston lui répond.
Maximize 2000-03-12
Tara Doucet pose la question :
My question is Maximize Q=xy^2 (y is to the exponent 2) where x and y are positive integers such that x + y^2 ( y is to the exponent 2)=4
Harley Weston lui répond.
Two calculus problems 2000-03-03
Tara Doucet pose la question :
  1. The height of a cylinder with a radius of 4 cm is increasing at rate of 2 cm per minute. Find the rate of change of the volume of the cylinder with respect to time when the height is 10 cm.

  2. A 24 cm piece of string is cut in two pieces. One piece is used to form a circle and the other to form a square. How should the string be cut so the sum of the areas is a maximum?


Harley Weston lui répond.
Slant height of a cone 2000-02-24
Jocelyn Wozney pose la question :
I need help with this problem for my high school calculus class. Any help you can give me will be greatly appreciated-I am pretty stumped. "Express the volume of a cone in terms of the slant height 'e' and the semi-vertical angle 'x' and find the value of 'x' for which the volume is a maximum if 'e' is constant.
Harley Weston lui répond.
The shortest ladder 1999-06-26
Nicholas pose la question :
A vertical wall, 2.7m high, runs parallel to the wall of a house and is at a horizontal distance of 6.4m from the house. An extending ladder is placed to rest on the top B of the wall with one end C against the house and the other end, A, resting on horizontal ground. The points A, B, and C are in a vertical plane at right angles to the wall and the ladder makes an angle@, where 0<@
Harley Weston lui répond.
Some Calculus Problems. 1997-10-30
Roger Hung pose la question :
  1. What real number exceeds its square by the greatest possible amount?

  2. The sum of two numbers is k. show that the sum of their squares is at least 1/2 k^2.

  3. .
    .
    .

Penny Nom lui répond.
 
Page
1/1

 

 


Centrale des maths reçoit une aide financière de l’Université de Regina et de The Pacific Institute for the Mathematical Sciences.

CMS
.

 

accueil centre de ressources accueil Société mathématique du Canada l'Université de Regina PIMS