. centre de ressources dilemmes et doutes le visage humain de mathématiques Qui sommes-nous Problème de mois activités de promotion babillard
Centrale des maths - centraledesmaths.uregina.ca
Dilemmes & doutes
« D & D »
. .
topic card  



liste de
. .
nouvelle recherche

2 articles trouvés pour ce sujet.
Two power generators 2019-06-07
A student pose la question :
At 100% efficiency two generators would produce 750 MW of power. At efficiencies of 65% and 75%, they produce 530 MW. At 100% efficiency, what power would each produce?
Harley Weston lui répond.
Labour efficiency 2005-08-23
Rob pose la question :

The problem, on the surface, seems very simple and yet has created some controversy among a group of accountants. The problem itself has to do with labour efficiency rates and only involves two variables; standard working hours, and actual working hours. The difficulty lies in deriving an efficiency % from these two numbers.

Standard working hours or the targeted number of labour hours required to produce one widget, which I will represent as "s". Actual working hour or the actual number of labour hours require to produce one widget, which I will represent as "a". Labour efficiency I will represent with "E". The prevailing calculation with which I have a problem with is this:

s/a=E or if s=3000, and a=4000 then 3000/4000=75%

What bothers me about the calculation is that the standard hours get represented as a percentage of the actual hours and in my opinion changes the focus of the calculation from standard or target, where it should be, to the actual hours. I cannot define why, but this just seems inherently wrong to me.
The calculation that I use:

(1+((s-a)/s))=E or if s=3000, and a=4000 then (1+((3000-4000)/3000))=66.67%

My calculation is like a %change from standard calculation. However, there is something that also concerns me about my calculation.

If you substitute 100 for a and 50 for s, then you come to a quandary, because if you plug those numbers into the second equation the result is of course zero % efficient which doesn't sit right with me either. If you plug them into the first calculation you get 50% efficiency which doesn't really seem to work either, because you require 100% more hours to do the same work in this case. ???

Is the first calculation correct? Am I missing something altogether? Are both calculations off base?

Harley Weston lui répond.



Centrale des maths reçoit une aide financière de l’Université de Regina et de The Pacific Institute for the Mathematical Sciences.



accueil centre de ressources accueil Société mathématique du Canada l'Université de Regina PIMS