.
. centre de ressources dilemmes et doutes le visage humain de mathématiques Qui sommes-nous Problème de mois activités de promotion babillard
Centrale des maths - centraledesmaths.uregina.ca
Dilemmes & doutes
« D & D »
. .
topic card  

Sujet:

efficiency

liste de
sujets
. .
nouvelle recherche

2 articles trouvés pour ce sujet.
 
Page
1/1
Two power generators 2019-06-07
A student pose la question :
At 100% efficiency two generators would produce 750 MW of power. At efficiencies of 65% and 75%, they produce 530 MW. At 100% efficiency, what power would each produce?
Harley Weston lui répond.
Labour efficiency 2005-08-23
Rob pose la question :

The problem, on the surface, seems very simple and yet has created some controversy among a group of accountants. The problem itself has to do with labour efficiency rates and only involves two variables; standard working hours, and actual working hours. The difficulty lies in deriving an efficiency % from these two numbers.

Standard working hours or the targeted number of labour hours required to produce one widget, which I will represent as "s". Actual working hour or the actual number of labour hours require to produce one widget, which I will represent as "a". Labour efficiency I will represent with "E". The prevailing calculation with which I have a problem with is this:

s/a=E or if s=3000, and a=4000 then 3000/4000=75%

What bothers me about the calculation is that the standard hours get represented as a percentage of the actual hours and in my opinion changes the focus of the calculation from standard or target, where it should be, to the actual hours. I cannot define why, but this just seems inherently wrong to me.
The calculation that I use:

(1+((s-a)/s))=E or if s=3000, and a=4000 then (1+((3000-4000)/3000))=66.67%

My calculation is like a %change from standard calculation. However, there is something that also concerns me about my calculation.

If you substitute 100 for a and 50 for s, then you come to a quandary, because if you plug those numbers into the second equation the result is of course zero % efficient which doesn't sit right with me either. If you plug them into the first calculation you get 50% efficiency which doesn't really seem to work either, because you require 100% more hours to do the same work in this case. ???

Is the first calculation correct? Am I missing something altogether? Are both calculations off base?


Harley Weston lui répond.
 
Page
1/1

 

 


Centrale des maths reçoit une aide financière de l’Université de Regina et de The Pacific Institute for the Mathematical Sciences.

CMS
.

 

accueil centre de ressources accueil Société mathématique du Canada l'Université de Regina PIMS