Centrale des maths - centraledesmaths.uregina.ca
Dilemmes & doutes
« D & D »
 Sujet: binomial expansion
nouvelle recherche

3 articles trouvés pour ce sujet.

 Page1/1
 nC0 + nC1 + nC2 + .... + nCn = 2^n 2018-02-19 bristal pose la question :(QQ) Prove, nC0 + nC1 + nC2 + .... + nCn = 2^n.Penny Nom lui répond. 0.999 ^ (500) 2010-03-07 debra pose la question :I just need to know how to solve the following problem without using a calculator: .999 ^ (500). I know the answer is .606, I just want to do it by hand since I can't use a calculator on my test.Penny Nom and Claude Tardif lui répond. Binomial coefficients 2000-03-21 Howard Lutz pose la question :How do you find each successive numerical term in this equation y+dy=(x+dx)5 =x5+5*x4dx+10*x3(dx)2+10*x^2(dx)3+5*x(dx)4+(dx)5 I would appreciate an explanation of the method to find the numeric coefficient in a binomial expansionPenny Nom lui répond.

 Page1/1

 Centrale des maths reçoit une aide financière de l’Université de Regina et de The Pacific Institute for the Mathematical Sciences.
 Qui sommes-nous :: carte du site :: our english site