.
. centre de ressources dilemmes et doutes le visage humain de mathématiques Qui sommes-nous Problème de mois activités de promotion babillard
Centrale des maths - centraledesmaths.uregina.ca
Dilemmes & doutes
« D & D »
. .
topic card  

Sujet:

bijection

liste de
sujets
. .
nouvelle recherche

2 articles trouvés pour ce sujet.
 
Page
1/1
The power set of A 2012-03-24
rashdin pose la question :
Can you find a set A, |A|=4 and define a bijective function between A and P(A)?
Penny Nom lui répond.
A bijection from (0,1)x(0,1) to (0,1) 2008-07-20
Adam pose la question :
I'm trying to prove that the function that takes the open square (0,1)x(0,1) to (0,1) is a bijection (and hence a continuum).

If we take an element (x,y) of (0,1)x(0,1) and represent (x,y) as (0.x1 x2 x3 x4..., 0.y1 y2 y3 y4...) aka x1 represents the tenths digit of x, x2 represents the hundredths, etc. Then we can define a function f((x,y)) = 0.x1 y1 x2 y2 x3 y3... However, this is not a bijection. I hypothesize this is because you'd be unable to create the number 0.1 as x=0.1 and would have to be y=0, which contradicts the open interval (0,1) defined for y. We have been told though, if we create the same function, except that we "group" 9's with their next digit into a "block" we can create a bijection. For example, if x=0.786923 and y=0.699213, then we define x1 to x3 as normal, but x4= 92, and x5=3. For y, we define y1 as normal, but y2=992, and y3 to y4 as normal. hence f((x,y)) = 0.7 6 8 992 6 1 92 3 3.

My questions are a) is my hypothesis on why the original function is not a bijection correct? b) why does the special blocking in the new function make a bijection?

Victoria West lui répond.
 
Page
1/1

 

 


Centrale des maths reçoit une aide financière de l’Université de Regina et de The Pacific Institute for the Mathematical Sciences.

CMS
.

 

accueil centre de ressources accueil Société mathématique du Canada l'Université de Regina PIMS